Performance Evaluation of Machine Learning Models for River Water Quality Prediction Using Open Environmental Sensor Data
Keywords:
river water quality, performance evaluation, environmental sensor data, predictive modeling, decision supportAbstract
Accurate prediction of river water quality is essential for effective environmental monitoring and sustainable water resource management. The increasing availability of open environmental sensor data enables continuous observation of key physicochemical parameters, offering new opportunities for data-driven prediction and evaluation. This study evaluates the performance of multiple predictive models for river water quality using open-access sensor datasets derived from diverse river systems. A comparative framework was applied to assess predictive accuracy, robustness, and generalization across indicators, spatial contexts, and temporal scales. Model performance was examined using standardized statistical metrics and benchmarked against official monitoring reference values reported in prior studies and regulatory reports. The findings indicate that predictive reliability varies across models and water quality parameters, with robustness strongly influenced by data quality, sensor characteristics, and environmental heterogeneity. The results further highlight the importance of transparent performance evaluation for operational monitoring, policy relevance, and decision-support applications. Overall, this study underscores that structured evaluation using open sensor data enhances the credibility, transferability, and practical applicability of river water quality prediction systems.
Downloads
References
Ahmed, A. N., Othman, F. B., Afan, H. A., Ibrahim, R. K., Fai, C. M., Hossain, M. S., ... & Elshafie, A. (2019). Machine learning methods for better water quality prediction. Journal of Hydrology, 578, 124084. https://doi.org/10.1016/j.jhydrol.2019.124084.
Alqahtani, A., Shah, M. I., Aldrees, A., & Javed, M. F. (2022). Comparative assessment of individual and ensemble machine learning models for efficient analysis of river water quality. Sustainability, 14(3), 1183. https://doi.org/10.3390/su14031183
Aziz, M. A. N., & Kharomen, I. (2025). Arsitektur Islam Vernakular sebagai Wujud Keberlanjutan Sosial dan Spiritual Masyarakat Muslim Lokal. Journal of Engineering and Applied Technology, 1(2), 208-217. https://doi.org/10.65310/w3h1a978
Chellaiah, C., Anbalagan, S., Swaminathan, D., Chowdhury, S., Kadhila, T., Shopati, A. K., ... & Amesho, K. T. (2024). Integrating deep learning techniques for effective river water quality monitoring and management. Journal of Environmental Management, 370, 122477. https://doi.org/10.1016/j.jenvman.2024.122477
Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., ... & Ren, H. (2020). Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water research, 171, 115454. https://doi.org/10.1016/j.watres.2019.115454.
Chen, P., Wang, B., Wu, Y., Wang, Q., Huang, Z., & Wang, C. (2023). Urban river water quality monitoring based on self-optimizing machine learning method using multi-source remote sensing data. Ecological Indicators, 146, 109750. https://doi.org/10.1016/j.ecolind.2022.109750
del Castillo, A. F., Garibay, M. V., Díaz-Vázquez, D., Yebra-Montes, C., Brown, L. E., Johnson, A., ... & Gradilla-Hernández, M. S. (2024). Improving river water quality prediction with hybrid machine learning and temporal analysis. Ecological Informatics, 82, 102655. https://doi.org/10.1016/j.ecoinf.2024.102655
Firdaus, S. R., & Syuhadah, M. S. C. (2025). Efisiensi Energi pada Sistem Telekomunikasi Industri untuk Meningkatkan Efisiensi Operasional di Indonesia 2022-2024. Journal of Engineering and Applied Technology, 1(2), 130-141. https://doi.org/10.65310/g4xdqc54
Hasanah, U. (2025). Arsitektur Kolonial Kota Madiun: Analisis Gaya, Sistem Bangunan, dan Adaptasi Tropis dari Indische Empire hingga Nieuwe Bouwen. Journal of Engineering and Applied Technology, 1(2), 218-225. https://doi.org/10.65310/w4wvbj05
Kouadri, S., Elbeltagi, A., Islam, A. R. M. T., & Kateb, S. (2021). Performance of machine learning methods in predicting water quality index based on irregular data set: application on Illizi region (Algerian southeast). Applied Water Science, 11(12), 190. https://doi.org/10.1007/s13201-021-01528-9.
Latullah, R. H., Sulistyo, G. A., Satyadharma, M., & Hado, H. (2025). Collaborative Governance dalam Pengawasan Angkutan Barang Umum yang Berkontribusi terhadap Program Zero Over Dimension dan Over Loading. Journal of Engineering and Applied Technology, 1(2), 30-37. https://doi.org/10.65310/ty3esh07
Leggesse, E. S., Zimale, F. A., Sultan, D., Enku, T., Srinivasan, R., & Tilahun, S. A. (2023). Predicting optical water quality indicators from remote sensing using machine learning algorithms in tropical highlands of Ethiopia. Hydrology, 10(5), 110. https://doi.org/10.3390/hydrology10050110
Liang, Y., Ding, F., Liu, L., Yin, F., Hao, M., Kang, T., ... & Jiang, D. (2025). Monitoring water quality parameters in urban rivers using multi-source data and machine learning approach. Journal of Hydrology, 648, 132394. https://doi.org/10.1016/j.jhydrol.2024.132394
Nishat, M. H., Khan, M. H. R. B., Ahmed, T., Hossain, S. N., Ahsan, A., El-Sergany, M. M., ... & Alresheedi, M. T. (2025). Comparative analysis of machine learning models for predicting water quality index in Dhaka’s rivers of Bangladesh. Environmental Sciences Europe, 37(1), 31. https://doi.org/10.1186/s12302-025-01078-w
Okafor, N. U., Alghorani, Y., & Delaney, D. T. (2020). Improving data quality of low-cost IoT sensors in environmental monitoring networks using data fusion and machine learning approach. ICT express, 6(3), 220-228. https://doi.org/10.1016/j.icte.2020.06.004
Serbaya, S. H. (2024). Waste management and water quality evaluation prediction in urban environments through advanced robust hybrid machine learning algorithms. Dynamics of Atmospheres and Oceans, 108, 101495. https://doi.org/10.1016/j.dynatmoce.2024.101495
Shah, M. I., Javed, M. F., Alqahtani, A., & Aldrees, A. (2021). Environmental assessment based surface water quality prediction using hyper-parameter optimized machine learning models based on consistent big data. Process Safety and Environmental Protection, 151, 324-340. https://doi.org/10.1016/j.psep.2021.05.026
Shyu, H. Y., Castro, C. J., Bair, R. A., Lu, Q., & Yeh, D. H. (2023). Development of a soft sensor using machine learning algorithms for predicting the water quality of an onsite wastewater treatment system. ACS Environmental Au, 3(5), 308-318. https://doi.org/10.1021/acsenvironau.2c00072
Wang, Z., Osmond, P., Shi, B., Janmohammadi, M., & Zhang, K. (2025). Next-generation water quality monitoring: sensor-based deep learning prediction and calibration optimization in urban rivers. Journal of Hydrology, 134715. https://doi.org/10.1016/j.jhydrol.2025.134715.
Widyas, R. S., & Shofiyyaturrodhiyah, M. D. (2025). An Engineering Approach to Architectural Heritage Conservation at Taman Sari in Yogyakarta. Journal of Engineering and Applied Technology, 1(2), 96-107. https://doi.org/10.65310/sbpswk69
Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., ... & Ye, L. (2022). A review of the application of machine learning in water quality evaluation. Eco-Environment & Health, 1(2), 107-116. https://doi.org/10.1016/j.eehl.2022.06.001
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Kuldeep Sharma, Rachana Rachana (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










